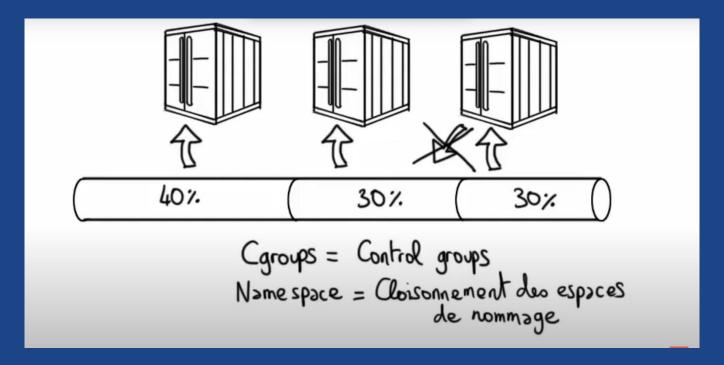

De Souza Hugo Delalande Alexian Cacheleux Vincent Mann Dorine

Qu'est-ce qu'un "Conteneur" ?

- Les conteneurs se basent sur les fonctionnalitées du système d'exploitation de la machine hôte
- Les conteneurs accèdent à l'OS hôte de manière totalement isolé les uns des autres
- Les conteneurs virtualisent : Le processeur, la RAM et le système de fichiers et non la machine. Ce n'est pas une VM!



Comment ça marche ?

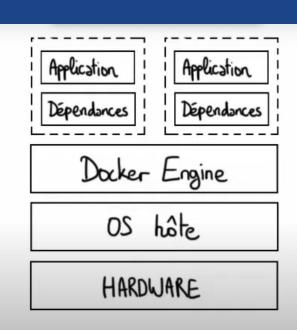
- Cgroups = Isoler et limiter l'utilisation des ressources
- Name space = Permet d'empêcher qu'un groupe puisse voir les ressources des autres groupes

Avantage/Inconvénients:

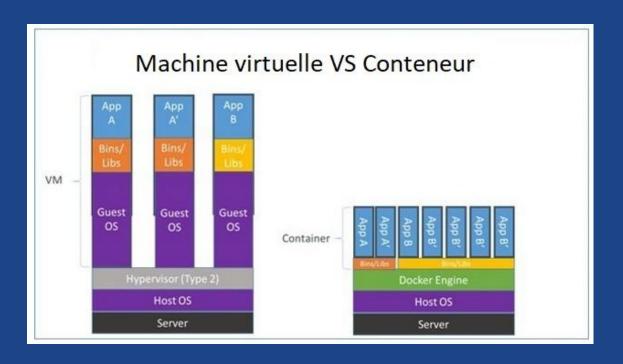
Avantages:

- Très léger
- Par conséquent facile à migrer, télécharger et installer
- Permet de développer des applications de façon plus efficiente, en utilisant moins de ressources, et de déployer ces applications plus rapidement.

Inconvénients:


- Difficultés à gérer plusieurs conteneurs simultanéments
- Problème de sécurité : Dû au système d'exploitation hôte

• Docker


- Technologie reposant sur le LXC (LinuX Containers)

- Permettant de créer des conteneurs qui vont uniquement contenir des applications avec leur dépendances.
- Les conteneurs Docker permettent d'embarquer des applications afin de les exécuter au sein de l'OS hôte mais de manière virtuellement isolé.

Notion d'un conteneur

Cas concret d'un conteneur :

- Besoin spécifique d'une technologie complexe pour un entreprise rapidement.
- Besoin d'alléger la demande de stockage d'une entreprise grâce aux conteneurs.
- Déploiement d'une solution adapté à chaque acteurs d'une entreprise.
- Gain de temps de déploiement pour une entreprise et économie sur les moyens mis en oeuvre pour une entreprise.

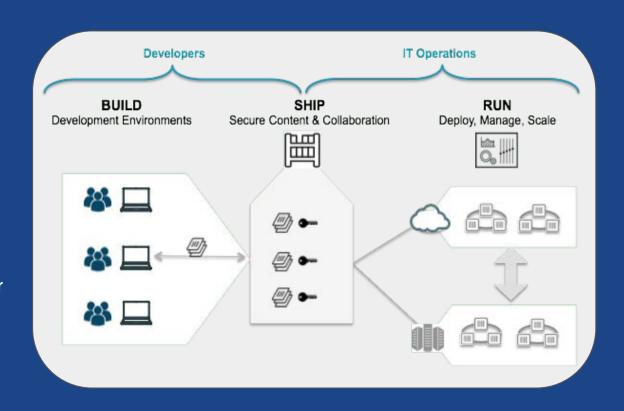

Management de conteneur

Diagramme d'un workflow en entreprise

Présentation de la solution de management "Containers as a Service" (CaaS)

Idées directrices de cette solution :

- Collaboration entre les développeurs et les opérateurs informatiques.
- Environnement de confiance avec des applications et outils sécurisé et en libre service pour le développement.
- Flexibilité des méthodes de travail pour les différents acteurs.

Sécurité d'un conteneur

Les conteneurs sont moins isolés les uns des autres que les machines virtuelles.

• Installation de Docker sur Debian

root@sv-sio-lin-pg04:/# apt update

root@sv-sio-lin-pg04:/# apt install apt-transport-https ca-certificates curl gnupg2 software-properties-common

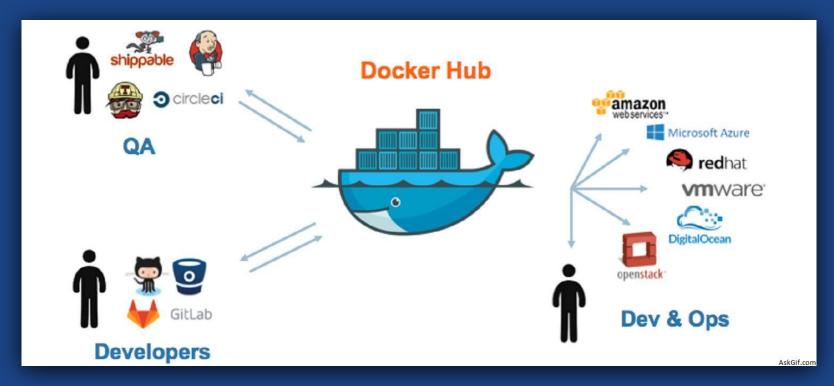
root@sv-sio-lin-pg04:/# curl -fsSL https://download.docker.com/linux/debian/gpg | apt-key add

```
root@sv-sio-lin-pg04:/# add-apt-repository "deb [arch=amd64] https://download.docker.com/linu
x/debian $(lsb release -cs) stable"
```

root@sv-sio-lin-pg04:/# apt update Réception de:1 https://download.docker.com/linux/debian stretch InRelease [44,8 kB] Réception de:2 https://download.docker.com/linux/debian stretch/stable amd64 Packages


```
root@sv-sio-lin-pg04:/# apt-cache policy docker-ce
docker-ce:
   Installé : (aucun)
   Candidat : 5:19.03.9~3-0~debian-stretch
   Table de version :
        5:19.03.9~3-0~debian-stretch 500
        500 https://download.docker.com/linux/debian stretch/stable amd64 Packages
5:19.03.8~3-0~debian-stretch 500
```

```
root@sv-sio-lin-pg04:/# apt install docker-ce
```


```
Progression : [ 31%] [################......]
```

```
root@sv-sio-lin-pg04:/# systemctl status docker
odocker.service - Docker Application Container Engine
Loaded: loaded (/lib/systemd/system/docker.service; enabled; vendor preset: enabled)
Active: active (running) since Tue 2020-05-26 17:05:41 CEST; 1min 19s ago
```


Déploiement d'hôtes (conteneurs)

- Dockerhub est la bibliothèque de conteneurs gratuit et payant disponible pour docker.

Déploiement à partir de Dockerhub

Commande "docker search" ou directement dockerhub

- \$ docker run -name websrv -p 9001:80 -d httpd

```
[node1] (local) root@192.168.0.8 ~
$ docker run --name websrv -p 9001:80 -d httpd
Unable to find image 'httpd:latest' locally
latest: Pulling from library/httpd
afb6ec6fdc1c: Pull complete
5a6b409207a3: Pull complete
41e5e22239e2: Pull complete
9829f70a6a6b: Pull complete
3cd774fea202: Pull complete
Digest: sha256:db9c3bca36edb5d961d70f83b13e65e552641e00a7eb80bf435cbe9912afcb1f
Status: Downloaded newer image for httpd:latest
724221c51f2f31ebc5924dd2cfc60acac07dd90bfa93c8497864188f81ef97c3
```

```
[node1] (local) root@192.168.0.8 ~
$ docker ps
CONTAINER ID
                     IMAGE
                                          COMMAND
                                                                CREATED
                                                                                    STATUS
                                                                                                          PORTS
                                                                                                                                  NAMES
724221c51f2f
                                                                                                         0.0.0.0:9001->80/tcp
                    httpd
                                          "httpd-foreground"
                                                               12 minutes ago
                                                                                    Up 12 minutes
                                                                                                                                 websrv
```


Création d'une image personnalisée

Création du fichier Dockerfile dans le projet

```
FROM debian:latest
RUN apt update && apt -y install apache2 && rm -rf /var/lib/apt/lists/*
COPY ./html /var/www/html
VOLUME /var/log/apache2
EXPOSE 80
CMD ["apachectl","-D","FOREGROUND"]
```

- Création de l'image

```
[node1] (local) root@192.168.0.8 ~/html
$ docker build -t testimg .
```


Gestion d'un conteneur

- \$ docker exec -it <nom du conteneur> /bin/bash

```
[node1] (local) root@192.168.0.8 ~
$ docker exec -it websrv /bin/bash
root@724221c51f2f:/usr/local/apache2# []
```

- \$ docker cp <source path> <nom du conteneur>:path

```
[node1] (local) root@192.168.0.8 ~
$ ls
index.html
[node1] (local) root@192.168.0.8 ~
$ docker cp index.html websrv:/usr/local/apache2/htdocs/index.html
```

- \$ docker stop <nom du conteneur>
- \$ docker start < nom du conteneur>
- \$ docker rm < nom du conteneur> ##Le conteneur doit être à l'arrêt.
- \$ docker stats
- \$ docker ps